Formal aspects in spatial and hierarchical modelling: a survey

Nicola Paoletti joint work with Emanuela Merelli and Diletta Romana Cacciagrano

University of CamerinoSchool of Science and Technology

Reykjavik, 25-02-2011

Outline

- Introduction
- 2 Bone Remodelling
- 3 Formal models for Bone Remodelling
 - Complex Automata
 - Bone remodelling in CxA
 - Spatial P Systems
 - Bone remodelling in SP
 - Hierarchical Timed Automata
 - Bone Remodelling in HTA
 - Shape Calculus
 - Bone remodelling in Shape Calculus
- 4 Conclusions

Hierarchical models

Hierarchical system

In hierarchical systems, a component can be specified in terms of a subordinate system

Some common examples are: Statecharts and Hierarchical FSM; Ambient Calculi; Membrane systems

Hierarchical models allows:

- Compositional and modular modelling of large systems
- Modelling of multi-level systems

Multiscale systems

Multiscale system

Multiscale systems are a class of multi-level systems where each level has associated a **spatial** and a **temporal** scale.

Natural phenomena are inherently multiscale, "from atoms to galaxies, from amino-acids to living organisms . . . " [Sun07]

Interactions occur between different scales \rightarrow scale integration plays a key role

V. Krzhizhanovskaya and S. Sun.

Simulation of Multiphysics Multiscale Systems: Introduction to the ICCS2007 Workshop.

Computational Science-ICCS 2007, pages 755-761, 2007.

Goal

Classical single-scale models (ODE, PDE, Stochastic Processes, Petri Nets, ...) not suitable for complex biological systems

Our goal:

Formal multiscale modelling, by exploring: Hierarchical formalisms → Multi-level Spatial formalisms → Space and time

We compare Complex Automata, Spatial P Systems, Hierarchical Timed Automata and the Shape Calculus through a multiscale biological case-study: Bone Remodelling

Outline

- Introduction
- 2 Bone Remodelling
- 3 Formal models for Bone Remodelling
 - Complex Automata
 - Bone remodelling in CxA
 - Spatial P Systems
 - Bone remodelling in SP
 - Hierarchical Timed Automata
 - Bone Remodelling in HTA
 - Shape Calculus
 - Bone remodelling in Shape Calculus
- 4 Conclusions

The bone remodelling process

Bone Remodelling (BR) is a multiscale phenomenon. We consider two different scales: **cellular** (micro) and **tissue** (macro).

Biological facts:

- Old bone is continuously replaced by new tissue.
- Mechanical integrity of the bone is maintained.
- In healthy conditions: no global changes in morphology/mass.
- Pathological conditions alter the equilibrium between bone resorption and bone formation (e.g. Osteoporosis)

Bone Remodelling scales

BR scales

- **Tissue level:** mechanical loading mainly affects the structure of the bone.
- Cellular level: the phenomenon is observed in the Basic Multicellular Unit (BMU).

Tissue scale

Cellular scale

Osteocytes (O_y) are connected by a network of canaliculi in the mineralized part; stem cells, stromal cells and pre-osteoclasts (P_c) circulate in the fluid part.

A sudden stress causes a micro-fracture to appear; O_y s near the crack undergo apoptosis; the other O_y s detect the strain and produce biochemical signals which activate the production of *pre-osteoblasts* (P_h).

 P_b s express the signal *RANK-L* attracting P_c s which have a *RANK* receptor on their surface.

 P_c s enlarge and fuse into mature osteoclasts (O_c) . O_c s attach to bone surface, and create an acid environment to resorb the bone.

 P_b s mature into osteoblasts (O_b) ; then, they line the resorbed cavity and mineralize it.

The network of canaliculi connecting the O_y s is re-established; the microdamage has been repaired.

Outline

- 1 Introduction
- 2 Bone Remodelling
- Formal models for Bone Remodelling
 - Complex Automata
 - ullet Bone remodelling in CxA
 - Spatial P Systems
 - Bone remodelling in SP
 - Hierarchical Timed Automata
 - Bone Remodelling in HTA
 - Shape Calculus
 - Bone remodelling in Shape Calculus
- 4 Conclusions

Outline

- Introduction
- 2 Bone Remodelling
- Formal models for Bone Remodelling
 - Complex Automata
 - Bone remodelling in CxA
 - Spatial P Systems
 - Bone remodelling in SP
 - Hierarchical Timed Automata
 - Bone Remodelling in HTA
 - Shape Calculus
 - Bone remodelling in Shape Calculus
- 4 Conclusions

Cellular Automata

Definition (Cellular Automaton)

A Cellular Automaton (CA) is a tuple

 $C = \langle A(\Delta x, \Delta t, L, T), S, s^0, R, G, F \rangle$ where

- A is the **spatial domain** of size L and made of cells of size Δx . Δt is the time step and T is the number of iterations.
- *S* is the set of **states**; $s^0 \in S$ is the **initial state**.
- R is the evolution rule.
- *G* is the **topology** describing the neighbourhood relation.
- *F* is the **flux of information** exchanged at each iteration between the system and its surroundings.

B. Chopard and M. Droz.

Cellular automata modeling of physical systems.

Cambridge University Press Cambridge, 1998.

Complex Automata

Complex Automata (CxA) are a formalism for **multiscale** complex systems.

Definition (Complex Automaton)

A CxA is a graph (V, E), where:

- each $C_i \in V$ is a single-scale CA, and
- each $E_{ij} \in E$ is a coupling procedure between C_i and C_j ; coupling procedures regulate communication and interaction between vertex.

A. Hoekstra, J. Falcone, A. Caiazzo, and B. Chopard.

Multi-scale modeling with cellular automata: The complex automata approach.

Cellular Automata, pages 192–199, 2010.

Scale separation map

A CxA can be represented through a **Scale Separation Map** (SSM).

- Each single-scale CA occupies an area wrt its spatial (x-axis) and temporal (y-axis) scales.
- Given two subsystems A and B, five different interaction regions are identified, according to the position of B on the map relative to A.

BR model in CxA

CxA multiscale model

- Tissue level: modelled as a lattice of BMU with a macro CA, C₁
- **Cellular level:** for each cell i of C_1 , a **micro** CA $C_{(i,2)}$ models a BMU as a lattice of O_y s.
- Only mechanical stimuli; no cellular dynamics.
- Size of C_1 is linearly determined by the size of $C_{(i,2)}$, which depends on the density of O_{γ} s.
- D. Cacciagrano, F. Corradini, and E. Merelli. Bone remodelling: a complex automata-based model running in BIOSHAPE. In ACRI 2010: The Ninth International Conference on Cellular Automata for Research and Industry, 2010.

Macro execution flow: the state of a cell i of C_1 at time t_1 is determined by the density $m_1^i(t_1)$, varying from 0 (void) to 1 (fully-mineralized). Each iteration of C_1 corresponds to a complete simulation of $C_{(i,2)}$, whose outputs modify m_1^i .

Macro execution flow: the state of a cell i of C_1 at time t_1 is determined by the density $m_1^i(t_1)$, varying from 0 (void) to 1 (fully-mineralized). Each iteration of C_1 corresponds to a complete simulation of $C_{(i,2)}$, whose outputs modify m_1^i .

Macro execution flow: the state of a cell i of C_1 at time t_1 is determined by the density $m_1^i(t_1)$, varying from 0 (void) to 1 (fully-mineralized). Each iteration of C_1 corresponds to a complete simulation of $C_{(i,2)}$, whose outputs modify m_1^i .

Macro execution flow: the state of a cell i of C_1 at time t_1 is determined by the density $m_1^i(t_1)$, varying from 0 (void) to 1 (fully-mineralized). Each iteration of C_1 corresponds to a complete simulation of $C_{(i,2)}$, whose outputs modify m_1^i .

Macro execution flow: the state of a cell i of C_1 at time t_1 is determined by the density $m_1^i(t_1)$, varying from 0 (void) to 1 (fully-mineralized). Each iteration of C_1 corresponds to a complete simulation of $C_{(i,2)}$, whose outputs modify m_1^i .

Macro execution flow: the state of a cell i of C_1 at time t_1 is determined by the density $m_1^i(t_1)$, varying from 0 (void) to 1 (fully-mineralized). Each iteration of C_1 corresponds to a complete simulation of $C_{(i,2)}$, whose outputs modify m_1^i .

BR model in CxA - Coupling scheme

- The two models are linked with the "micro-macro" coupling mechanism: a fast process on a small spatial scale $(C_{(i,2)})$ is coupled to a slow process on a large spatial scale (C_1) .
- The macro model takes input (mineralization values) from the micro model; this paradigm is called *Hierarchical Model* Coupling (HMC).

CxA - Main features

Faithfulness

 CxA only considers mechanical stimuli; cellular level is approximated to a lattice of O_ys

Integration of different scales

In CxA, integration schemes are native (edges of the graph);
 the SSM illustrates the single-scale processes wrt their spatial and temporal scales and of their mutual coupling

Spatial features

• Spatial information in a CA is limited to the cell size, the total size and the neighbourhood relation

Outline

- Introduction
- 2 Bone Remodelling
- Formal models for Bone Remodelling
 - Complex AutomataBone remodelling in CxA
 - Spatial P SystemsBone remodelling in SP
 - Hierarchical Timed Automata
 - Bone Remodelling in HTA
 - Shape Calculus
 - Bone remodelling in Shape Calculus
- 4 Conclusions

P Systems

P Systems

P Systems are bio-inspired computing devices, structured in a membrane hierarchy

- Objects in a membrane represent molecules
- Evolution rules of the form $u \rightarrow v$ model chemical reactions between reactant objects u and product objects v.
- Target messages specify whether the products of the reaction remain in the membrane or are moved out.
- The result of a successful (convergent) computation is the multiset of objects sent out the root membrane.

G. Pun.

Computing with membranes.

Journal of Computer and System Sciences, 61(1):108–143, 2000.

Spatial P Systems (1/2)

Spatial P Systems (SP) enrich P System with a **2D discrete space**

- Membranes are rectangular and objects occupy a single position.
- A single position can contain an arbitrary number of ordinary objects, but only one mutually esclusive object.

R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, G. Pardini, and L. Tesei. Spatial P systems.

Natural Computing, pages 1-14, 2010.

Spatial P Systems (2/2)

Target messages can be of the form:

- $v_{\delta p}$, $\delta p \in \mathbb{Z}^2$: objects v in position p are moved to $p + \delta p$ in the same membrane;
- v_{in_i} : send v in the nearest position of the child membrane i;
- v_{out}: sent v in one of the nearest positions outside the membrane.

Example

Membranes 4 and 5 are wrongly located, since adjacent edges are forbidden. Red arrows indicate the possible positions of the object **a** after an **out** rule.

SP - Definition

Definition (Spatial P System)

A **Spatial P system** Π is a tuple

 $\langle V, E, \mu, \sigma, W^{(1)}, ..., W^{(n)}, R_1, ..., R_n \rangle$ where

- V and E are disjoint alphabets of ordinary objects and mutually esclusive (ME) objects;
- $\mu \subset \mathbb{N} \times \mathbb{N}$ describes the membrane hierarchy; $(i,j) \in \mu$ implies that membrane j is child of i;
- $\sigma: \{1,...,n\} \to N^2 \times (N^+)^2$ describes position and dimension of membranes;
- $W^{(i)} = \{w_{x,y}^{(i)} \in (V \cup E)^* \mid 0 \le x < w_i, 0 \le y < h_i\}$, with i = 1, ..., n indicates the objects at each position of i;
- R_i is the set of **evolution rules** associated to i.

BR model in SP

SP multiscale model

- **Tissue level:** modelled with a macro SP, S_1
- Cellular level: for each cell i of S_1 , a micro SP $S_{(i,2)}$ models a single BMU

D. Cacciagrano, F. Corradini, E. Merelli, and L. Tesei.

Multiscale Bone Remodelling with Spatial P Systems.

Membrane Computing and Biologically Inspired Process Calculi 2010, page 65, 2010.

BR in SP - Tissue model (1/2)

Each position *p* contains:

- A number j of objects c proportional to the mineralization density; in a superficial cell, $j \in [m, m+n)$
- An activator object a, if p is a surface cell
- At most one g object which models a micro damage; the corresponding cell will be selected for remodelling.
- At most one h object indicating that the cell is randomly selected for remodelling.

BR in SP - Tissue model (2/2)

C8 C² C² C4 C3 C3 C8 ah c⁵ ah c² c² С3 C3 C3 C3 C4 С4 C8 ah c⁷ C4 C4 C3 C4 C8 C9 ah ag c⁶ C4 C4 C4 C8 C8 C9 c⁵ a c⁷ ah c⁶ ah c⁵ ah ag c⁵ c⁵ C4 C4 C8 C8 c9 C9 C9 a a ag c^6 c^6 c^6 C4 C3 C4 C8 C9 C10 C4 C3 С4 C8 C9 C10 C10

Rules

Spatial P Systems

 $r_1:c^ma\to b_1d_1;\quad r_2:c^nb_1\to c^{n+m}b;\quad r_3:d_1\to d;\quad r_4:db\to \lambda;$

 $r_5: db_1 \rightarrow c^m f; \quad r_6: fg \rightarrow r; \quad r_7: fh \rightarrow r$

BR in SP - Tissue model (2/2)

C8 C² C² C3 C3 C8 c² c² C3 С3 C3 C3 C4 C4 C8 C4 C3 C3 C4 C4 C4 C8 C9 C8 C8 C9 a c⁷ r C⁶ C8 C8 C^9 C9 C8 C9 C10 $\frac{a}{c^7}$ $\frac{r}{c^6}$ $\frac{c^4}{c^3}$ $\frac{c^4}{c^4}$ C_8 C9 C10 C10

Rules

Spatial P Systems

 $r_1:c^ma\to b_1d_1;\quad r_2:c^nb_1\to c^{n+m}b;\quad r_3:d_1\to d;\quad r_4:db\to \lambda;$

 $r_5: db_1 \rightarrow c^m f; \quad r_6: fg \rightarrow r; \quad r_7: fh \rightarrow r$

The root membrane is divided in two zones:

- A mineralized part with two types ME objects: O_y (bone cell with an osteocyte) and C (bone cell with no osteocytes).
- A non-mineralized part; membrane 2 models the connection with blood and marrow, and produces P_b s and P_c s once the starter object s has entered it.

The initial configuration depends on the mineralization degree computed at the higher level.

The biochemical signal *s* spread over the fluid part and moves towards East until it enters membrane 2.

Rule(s)
$$s \rightarrow s_N s_E s_S \quad s \rightarrow s_E \quad s \rightarrow s_{in_2} \quad s \rightarrow s_{out}$$

The biochemical signal s spread over the fluid part and moves towards East until it enters membrane 2.

Rule(s)
$$s \rightarrow s_N s_E s_S \quad s \rightarrow s_E \quad s \rightarrow s_{in_2} \quad s \rightarrow s_{out}$$

The biochemical signal *s* spread over the fluid part and moves towards East until it enters membrane 2.

Rule(s)
$$s \rightarrow s_N s_E s_S \quad s \rightarrow s_E \quad s \rightarrow s_{in_2} \quad s \rightarrow s_{out}$$

A single s produces k $P_c s$ and l $P_b s$ from membrane 2; here k = l = 4; any other object s entering the membrane is inactivated by s'.

Rule(s) - Membrane 2

$$s \to s'(P_c)^k_{out}(P_b)^\ell_{out}$$
 $s's \to s'$ $s' \to s's'_N$ $s' \to s's'_S$

 P_c s move randomly and aggregate to form a mature O_c . Object C_n , with $n < N_OC$ denotes a conglomerate of n P_c s. N_OC is the number of P_c s needed to form a grown O_c . Here, $N_OC = 4$.

Rule(s)

$$\begin{array}{c} \mathsf{P}_c \to \mathsf{P}_c \; \mathsf{P}_c \to \mathsf{P}_{cN} \; \mathsf{P}_c \to \mathsf{P}_{cS} \; \mathsf{P}_c \to \mathsf{P}_{cO} \; \mathsf{P}_c \to \mathsf{P}_{cE} \; \mathsf{P}_c{}^h \to \mathsf{C}_h \\ \mathsf{P}_c{}^{h_1} - \mathsf{P}_c{}^{h_2} \to \lambda - \mathsf{C}_{h_1 + h_2} \quad \mathsf{C}_h - \mathsf{P}_c \to \mathsf{C}_{h+1} - \lambda \quad \mathsf{C}_h \mathsf{P}_c \to \mathsf{C}_{h+1} \\ \mathsf{C}_{N-OC-1} - \mathsf{P}_c \to \mathsf{O}_{cO} - \lambda \quad \mathsf{C}_{N-OC-1} \mathsf{P}_c \to \mathsf{O}_{cO} \end{array}$$

 P_c s move randomly and aggregate to form a mature O_c . Object C_n , with $n < N_OC$ denotes a conglomerate of n P_c s. N_OC is the number of P_c s needed to form a grown O_c . Here, $N_OC = 4$.

Rule(s)

$$\begin{array}{c} \mathsf{P}_c \to \mathsf{P}_c \; \mathsf{P}_c \to \mathsf{P}_{cN} \; \mathsf{P}_c \to \mathsf{P}_{cS} \; \mathsf{P}_c \to \mathsf{P}_{cO} \; \mathsf{P}_c \to \mathsf{P}_{cE} \; \mathsf{P}_c{}^h \to \mathsf{C}_h \\ \mathsf{P}_c{}^{h_1} - \mathsf{P}_c{}^{h_2} \to \lambda - \mathsf{C}_{h_1 + h_2} \quad \mathsf{C}_h - \mathsf{P}_c \to \mathsf{C}_{h+1} - \lambda \quad \mathsf{C}_h \mathsf{P}_c \to \mathsf{C}_{h+1} \\ \mathsf{C}_{N \; OC-1} - \mathsf{P}_c \to \mathsf{O}_{cO} - \lambda \quad \mathsf{C}_{N \; OC-1} \mathsf{P}_c \to \mathsf{O}_{cO} \end{array}$$

The O_c s move towards West to the mineralized part.

$$\mathsf{Rule}(\mathsf{s})$$

$$\mathsf{O}_c \to \mathsf{O}_{cW}$$

 O_{ci} is an osteoclast which has consumed i mineralized cells, with $i \le N_DC$; here $N_DC = 3$.

$$O_y - O_{cz} \rightarrow O_{cz+1} - \lambda$$
 $C - O_{cz} \rightarrow O_{cz+1} - \lambda$ $O_y - O_{cN-DC-1} \rightarrow \lambda - o$

Once absorbed $N_{-}DC$ cells, the O_c dies and release an object o, the biochemical signal that will trigger the production of O_b s for bone formation.

$$C - O_{CN,DC-1} \rightarrow \lambda - o$$

BR in SP - Coupling scheme

Scale Integration Functions

- **f** \downarrow **(top-down):** if a cell i of S_1 is subject to remodelling, the function puts the starter object s in $S_{(i,2)}$. Moreover, $f \downarrow$ sets the initial configuration of $S_{(i,2)}$ according to the number of c objects in i.
- $f \uparrow (bottom-up)$: after the simulation of $S_{(i,2)}$, it determines the number of c objects to be placed on the cell i of S_1 .

SP - Main features

Faithfulness

- CxA only considers mechanical stimuli; cellular level is approximated to a lattice of O_vs
- SP includes complex cellular dynamics (biochemical signals, P_b s and P_c s formation, ...)

Integration of different scales

- In CxA, integration schemes are native (edges of the graph);
 the SSM illustrates the single-scale processes wrt their spatial and temporal scales and of their mutual coupling
- SP systems don't include a priori integration mechanisms

Spatial features

- Spatial information in a CA is limited to the cell size, the total size and the neighbourhood relation
- SP systems implement *compartmentalization*, a *2D space*, and movement of objects by *evolution rules*

Outline

- Introduction
- 2 Bone Remodelling
- Formal models for Bone Remodelling
 - Complex Automata
 Bono remodelling in CxA
 - Bone remodelling in CxA
 - Spatial P SystemsBone remodelling in SP
 - Hierarchical Timed Automata
 - Bone Remodelling in HTA
 - Shape Calculus
 - Bone remodelling in Shape Calculus
- 4 Conclusions

Timed Automata (1/2)

A Timed Automaton (TA) is a non-deterministic Finite State Machine (FSM) with a finite set of real-valued *clocks* C and a set of *clock constraints* (guards) $\mathcal{B}(C)$.

Definition (Timed Automaton)

A **timed automaton** over a set of clocks C and a finite set of actions Act is a tuple (L, I_0, E, I) , where

- $L = \{l_0, l_1, ...\}$ is a finite set of **locations**;
- $I_0 \in L$ is the initial location;
- $E \subseteq L \times \mathcal{B}(C) \times Act \times 2^C \times L$ is a finite set of **edges**;
- $I: L \to \mathcal{B}(C)$ assigns **invariants** to locations.

Given an edge $l \xrightarrow{g,a,r} l'$, g is the guard, a is the action and r is the set of clocks to be reset.

Timed Automata (2/2)

Example (Light switch)

From the initial location Off, the automaton can reach the location Light with a press? action and a clock reset (x := 0). Then, if a press? action is fired when x > 14, the active location will be Off, while if press? is performed before, we move to Bright.

R. Alur and D. Dill.

A theory of timed automata.

Theoretical computer science, 126(2):183–235, 1994.

Statecharts (1/2)

Statecharts

Statecharts are a visual formalism for Hierarchical Finite State Machines.

Locations can be of two types:

- XOR-locations → alternative composition. When a XOR-location is active, only one of its sublocation is active.
- AND-locations → concurrency. Given a state where an AND-location is active, then all its sublocations are active.

D Harel

Statecharts: A visual formalism for complex systems.

Science of computer programming, 8(3):231-274, 1987.

Statecharts (2/2)

Example

Y consists of two AND sublocations, A and D; B, C and E, F, G are XOR-locations contained in A and D, respectively. The first location to be entered in D is F; the presence of the history element in A means that the last visited location between B and C must be entered (B, if it is the first time in A).

Hierarchical Timed Automata

Hierarchical Timed Automata (HTA) extend UPPAAL's Timed Automata with a Statecharts-like **hierarchical structure**. It features:

- AND-locations and XOR-locations
- Real-valued clocks and integer variables (including arrays of variables)
- Synchronization channels
- Urgent edges
- A Structural Operational Semantics (SOS) for HTA states.

Simulation and verification with UPPAAL is possible by applying flattening algorithms.

A. David.

Hierarchical modeling and analysis of timed systems. PhD thesis. 2003.

Evolution of a HTA

Evolution of a HTA

Evolution of a HTA

BR in HTA - Tissue location

Var(Cell _i)		
density: an integer proportional to the mineralization density		
stress: magnitude of mechanical stress		
$t_{ij}: \stackrel{oldsymbol{g}_{ij}, oldsymbol{s}_{ij}, r_{ij}, u_{ij}}{\longrightarrow}, j \in \{1,2\}$		
$t_{ij}: \stackrel{g_{ij},s_{ij},r_{ij},u_{ij}}{\longrightarrow}, j\in\{1,2\}$		
$\begin{array}{c} t_{ij}: \stackrel{g_{ij}, s_{ij}, r_{ij}, u_{ij}}{\longrightarrow}, j \in \{1, 2\} \\ g_{i1} = \textit{density} \geq \textit{d}_{\textit{min}} \ \land \ \textit{density} < \textit{d}_{\textit{min}} + \delta \ \land \ \textit{stress} > \textit{f}_{\textit{min}} \end{array}$		

BR in HTA - $Micro_i$ location (1/2)

 $Var(BMU_{ij})$ n_{Oy} : number of Osteocytes n_{minC} : number of mineralized cells $Clocks(BMU_{ij})$ \times

BR in HTA - $Micro_i$ location (2/2)

$$\begin{array}{c} & & & & \\ & Inv(Resorption) = x \leq t_{resorption}; \ Inv(Formation) = x \leq t_{formation} \\ & & & t_{ijk}: \xrightarrow{\mathcal{E}_{ijk}, \mathcal{F}_{ijk}, u_{ijk}}, k\{1, 2, 3\} \\ & & & t_{ij1} = \{x := 0, n_{O_{\mathcal{Y}}} := f(density), n_{minC} := g(density)\} \\ & & & g_{ij2} = x \geq t_{resorption} \\ & & & r_{ij2} = \{x := 0, n_{O_{\mathcal{Y}}} := n_{O_{\mathcal{Y}}} - oy_{resorption}, n_{minC} := n_{minC} - c_{resorption}\} \\ & & & g_{ij3} = x \geq t_{formation} \\ & & & r_{ij3} = \{x := 0, n_{O_{\mathcal{Y}}} := n_{O_{\mathcal{Y}}} + oy_{formation}, n_{minC} := n_{minC} + c_{formation}\} \end{array}$$

- Resorption and Formation are basic locations
- This model can be further refined by specializing Resorption and Formation to the cellular level

HTA - Main features (1/2)

Faithfulness

- CxA only considers mechanical stimuli; cellular level is approximated to a lattice of O_Vs
- SP includes complex cellular dynamics (biochemical signals, P_b s and P_c s formation, ...)
- HTA can potentially express complex cellular dynamics

Integration of different scales

- In CxA, integration schemes are native (edges of the graph);
 the SSM illustrates the single-scale processes wrt their spatial and temporal scales and of their mutual coupling
- SP systems don't include a priori integration mechanisms
- In HTA, a single level in the location hierarchy maps a single scale of the system

HTA - Main features (2/2)

Spatial features

- Spatial information in a CA is limited to the cell size, the total size and the neighbourhood relation
- SP systems implement compartmentalization, a 2D space, and movement of objects by evolution rules
- HTA don't provide a notion of space (integer variables may model discrete coordinates)

Outline

- Introduction
- 2 Bone Remodelling
- 3 Formal models for Bone Remodelling
 - Complex Automata
 Dana manadalling in CuA
 - Bone remodelling in CxA
 - Spatial P SystemsBone remodelling in SP
 - Hierarchical Timed Automata
 Bone Remodelling in HTA
 - Shape Calculus
 - Bone remodelling in Shape Calculus
- 4 Conclusions

Shape Calculus (1/2)

Shape Calculus

The **Shape Calculus** is a bio-inspired **spatial** process algebra for describing 3D processes moving and interacting in the 3D space. A 3D process is characterized by

- a behaviour specified in Timed CCS
- a shape (basic or complex). Shapes have a position, a velocity and a mass, and can be composed by binding on compatible channels exposed in their surface.
- E. Bartocci, F. Corradini, M. Di Berardini, E. Merelli, and L. Tesei. Shape Calculus. A Spatial Mobile Calculus for 3D Shapes. Scientific Annals of Computer Science, 20, 2010.

Shape Calculus (2/2)

- Two operators for breaking bonds: ρ , strong-split (urgent) and ω , weak-split (not urgent).
- The time domain is continuous, but divided into small time steps Δ . At each step, collisions are resolved and velocities are updated. The detection of a collision can break the timeline before Δ has elapsed.

Bind, split, collision detection

Example

In figure (a), the binding of the processes $S_0[B_0]$ and $S_1[B_1]$ on channel $\langle b, \cdot \rangle$; the resulting composed process is $S_0[B_0]\langle b, W \rangle S_1[B_1]$, where W is the common surface of contact $Y \cap Z$; eventually, a weak split occurs.

Figure (b) shows an example of timeline; collisions break the timeline, while splits are resolved at the end of the time step Δ .

3D Shapes

Definition (3D Shape)

The set $\mathbb S$ of **3D** shapes is generated by the grammar $S := \sigma | S\langle X \rangle S$, where σ is a basic shape (sphere, cone, cylinder or convex polyhedron) and X is the common surface.

Definition (Shape behaviours)

The set \mathbb{B} of **shape behaviours** is given by the grammar

$$B ::= \mathsf{nil} \mid \langle \alpha, X \rangle.B \mid \omega(\alpha, X).B \mid \rho(L).B \mid \epsilon(t).B \mid B + B \mid K$$

where K is a process name, and $\epsilon(t)$ is the delay operator.

3D Processes

Definition (3D Process)

The set 3DP of **3D processes** is generated by the grammar $P ::= S[B] \mid P\langle \alpha, X \rangle P$, where $S \in \mathbb{S}$, $B \in \mathbb{B}$, and $\langle \alpha, X \rangle$ is a channel with $X \neq \emptyset$.

BR model in the Shape Calculus

Shape Calculus multiscale model

- **Tissue level:** is modelled with bone and fluid cubes; surface cubes are decomposed in more complex shapes.
- **Cellular level:** a BMU is represented as a network of 3D processes $(O_y s, L_c s, P_b s, P_c s, O_b s, O_c s)$.

BR in the Shape Calculus - Tissue model

The process involved are:

- $\bullet \ \ \, S_{min}[B_{min}], \ \, \text{a mineralized component with mass} \\ m+n$
- S_{fluid}[B_{fluid}], a fluid component with mass m

 δ is the mineralization density of a cell; in S_{surf} ,

$$0 < \delta < 1$$
, in S_{min} , $\delta = 1$, while in S_{fluid} , $\delta = 0$.

BR in the Shape Calculus - Cellular model (1/2)

3D Process	Description	Shape
$S_{oy}[B_{oy}]$	a cell with an O_y	
$S_c[B_c]$	a cell without O _y s	
S _{Ic} [B _{Ic}]	a L _c	
$S_{sig}[B_{sig}]$	the signal produced by a O_y	
$S_{pb}[B_{pb}]$	a pre-osteoblast	
$S_{pc}[B_{pc}]$	a pre-osteoclast	
$S_{rec}[B_{rec}]$	the receptor for $S_{sig}[B_{sig}]$	•

Mineralized cells are bound together, so implementing the network of canaliculi. O_y s activates remodelling by performing a \overline{can} action which propagates towards the lining cells. A receptor is attached to each P_b and P_c .

A remodelling signal is attached to each L_c ; when a L_c binds with a mineralized cell on an exposed channel $\langle can, \cdot \rangle$, a weak split causes $S_{sig}[B_{sig}]$ to detach and move towards the fluid part.

Signals collide and bind with receptors on channel $\langle a_{sig}, \cdot \rangle$, provoking another weak split which involves pre-osteoblasts and pre-osteoclasts.

 P_c s move randomly and aggregate by binding in order to form a full O_c

A grown O_c corresponds to the composition of n_OC P_c s. Here, $n_OC = 8$

Once the osteoclast is formed, its velocity is updated so that it can reach the mineralized part in a time t_{OC} .

A O_c can erode a single mineralized cell (or L_c) for each of its free surfaces. A mineralized cell is absorbed when it binds to an O_c on a channel $\langle del, \cdot \rangle$; then, a strong split breaks all the bonds of the cell which is send out of the BMU.

After a time t'_{OC} , the O_c undergoes apoptosis; at the same time, P_b s turn into mature osteoblasts and reach the bone surface in a time t_{OB} .

Each O_b attach to a bone cell and behaves as B_{oy} or B_c , so replacing the consumed cells. The bone formation process lasts a time t'_{OB} , after which the remaining O_b s replace the absorbed lining cells.

The original structure is re-established.

BR in the Shape Calculus - Coupling scheme

Scale Integration Functions

- $\mathbf{f} \downarrow \text{(top-down)}$: computes the number of mineralized cells in the BMU model, which is proportional to the mass of the corresponding tissue cell $\mathbf{m}(S_{surf})$, which in turn depends on the density δ .
- $\mathbf{f} \uparrow (\mathbf{bottom\text{-}up})$: after the execution of the BMU model, $f \uparrow$ modifies $\mathbf{m}(S_{surf})$ according to the new mineralization values of the lower level.

Shape Calculus - Main features (1/2)

Faithfulness

- CxA only considers mechanical stimuli; cellular level is approximated to a lattice of O_ys
- SP and Shape Calculus include complex cellular dynamics (biochemical signals, P_bs and P_cs formation, . . .)
- HTA can potentially express complex cellular dynamics

Integration of different scales

- In CxA, integration schemes are native (edges of the graph);
 the SSM illustrates the single-scale processes wrt their spatial and temporal scales and of their mutual coupling
- SP systems and Shape Calculus don't include a priori integration mechanisms
- In HTA, a single level in the location hierarchy maps a single scale of the system

Shape Calculus - Main features (2/2)

Spatial features

- Spatial information in a CA is limited to the cell size, the total size and the neighbourhood relation
- SP systems implement compartmentalization, a 2D space, and movement of objects by evolution rules
- HTA don't provide a notion of space (integer variables may model discrete coordinates)
- In the Shape Calculus, processes are located in the 3D space, and have a shape, a mass, and a velocity; it supports elastic collisions, inelastic collisions (binding) and splitting

Outline

- 1 Introduction
- 2 Bone Remodelling
- 3 Formal models for Bone Remodelling
 - Complex Automata
 - Bone remodelling in CxA
 - Spatial P Systems
 - Bone remodelling in SP
 - Hierarchical Timed Automata
 - Bone Remodelling in HTA
 - Shape Calculus
 - Bone remodelling in Shape Calculus
- 4 Conclusions

Comparison table

Formalism	Time	Space	Hierarchy
Complex Automata	Discrete step	Discrete lattice Neighbourhood	Ø
Spatial P Systems	Discrete step	Discrete lattice Compartmental	Membrane Hierarchy
Hierarchical Timed Au- tomata	Continuous (R) Discrete event	Not explicit	Location Hierarchy
BioAmbients	Discrete event	Compartmental Particle-based	Compartment nesting
Bio-PEPA	Discrete event ODE semantics	- Compartmental	Compartment nesting
$L\pi$	Discrete event ODE semantics	Lattice (subvolumes) Compartmental	Compartment nesting
Shape Calculus	Continuous (\mathbb{R}) Δ approximation Discrete event	Continuous (\mathbb{R}^3) Particle-based Physical laws	Ø

Other spatial and hierarchical formalisms

- Dynamic Cellular Automata (DCA)
- Hierarchical Petri Nets
- Hierarchical Markov Processes
- Algebra of Hierarchical Graphs
- **Spatial and geometrical PAs:** 3π , Spatial CLS, Space π , Shape Calculus, $L\pi$, Attributed π (π (L))
- PAs with localities/compartments/membranes:
 Bio-PEPA, BioAmbients, Join-calculus, Klaim, Beta-binders,
 Brane Calculus, Calculus of Wrapped Compartments (CWC),

. . .

...

Current work

- Simulation of a BMU model described in a Shape Calculus-like syntax, in Repast Symphony ¹, an agent-based modelling and simulation platform.
- Collaboration in the development of BIOSHAPE², a particle-based spatial 3D simulator and a multiscale modelling environment for biological systems.
- Implementation of an ODE model at BMU level in CUDA (Compute Unified Device Architecture)³, a parallel computing architecture for GPU-computing.

¹http://repast.sourceforge.net/

²http://cosy.cs.unicam.it/bioshape/

Future work

- Investigation of new uniform computational approaches for multiscale modelling
- A study on the relative expressiveness of the Shape Calculus wrt other Spatial and Mobile PAs.
- Formal verification of qualitative and quantitative properties in the Shape Calculus

Acknowledgements

Marco Viceconti from the *Istituto Ortopedico Rizzoli* ⁴ for his scientific support and his collaboration with our research group

UNICAM COmplexSYstems Research Group ⁵

⁴http://www.ior.it

⁵http://cosy.cs.unicam.it/

Thank you!