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What	is	persistent	homology?

e.g.	components,	
holes,	

graph	structure

e.g.	set	of	discrete	
points,	with	a	metric

Persistent	homology	is	an	
algebraic	method	for	discerning	
topological	features	of	data.



Persistent	homology	emerged	in	the	
past	20	years	due	to	the	work	of:

Frosini,	Ferri,	et.	al.	(Bologna,	Italy)
Robins	(Boulder,	Colorado,	USA)

Edelsbrunner (Duke,	North	Carolina,	USA)
Carlsson,	de	Silva,	et.	al.	(Stanford,	California,	USA)

Zomorodian (Dartmouth,	New	Hampshire,	USA)
and	others



Example:	What	is	the	shape	of	the	data?

Problem:	Discrete	points	have	trivial	topology.



𝑑

Idea:	Connect	nearby	points.

1.	Choose	
a	distance	

𝑑.

Problem:	A	graph	captures	connectivity,	but	
ignores	higher-order	features,	such	as	holes.

2.	Connect	
pairs	of	points	
that	are	no	
further	apart	

than	𝑑.



Background
A	simplicial complex is	built	from	points,	edges,	
triangular	faces,	etc.

Homology counts	components,	holds,	voids,	etc.

0-simplex 1-simplex 2-simplex 3-simplex
(solid)

example	of	a	
simplicial complex

hole void
(contains	faces	but	
empty	interior)

Homology	of	a	simplicial
complex	is	computable	

via	linear	algebra.



𝑑

Idea:	Connect	nearby	points,	build	a	simplicial	
complex.

1.	Choose	
a	distance	

𝑑.

Problem:	How	do	we	choose	distance	𝑑?

2.	Connect	
pairs	of	points	
that	are	no	
further	apart	

than	𝑑.

3.	Fill	in	
complete	
simplices.

4.	Homology	detects	the	hole.





If	𝑑 is	too	small…

…then	we	detect	noise.





If	𝑑 is	too	large…

…then	we	get	a	giant	simplex	(trivial	homology).



𝑑

Problem: How	do	we	choose	distance	𝑑?

This	𝑑
looks	
good.

Idea:	Consider	all distances	𝑑.

How	do	we	
know	this	hole	
is	significant	

and	not	noise?



Each	hole	appears	at	a	particular	
value	of	𝑑 and	disappears	at	
another	value	of	𝑑.

𝑑&

𝑑'

We	can	represent	the	
persistence of	this	hole	as	a	
pair	 𝑑&, 𝑑' .

𝑑: 𝑑&

We	visualize	this	pair	as	a	
bar	from	𝑑& to	𝑑':

𝑑'
A	collection	of	bars	is	a	barcode.





𝑑: 0 1 2 3

Example:

Record	the	barcode:



𝑑: 0 1 2 3

Example:

Record	the	barcode:

Short	bars	
represent	
noise.

Long	bars	
represent	
features.



A	persistence	
diagram	is	an	
alternate	depiction	
of	a	barcode.

Dots	near	the	diagonal	
represent	noise.

Dots	far	from	the	
diagonal	represent	
features.

Instead	of	drawing	 𝑎, 𝑏
as	a	bar	from	𝑎 to	𝑏,	draw	
a	dot	at	coordinates	(𝑎, 𝑏).



A	barcode	is	a	visualization	of	an	
algebraic	structure.

Consider	the	sequence	 𝐶. of	complexes	associated	to	
a	point	cloud	for	an	sequence	of	distance	values:

𝐶& 𝐶' 𝐶/
𝜄 𝜄



A	barcode	is	a	visualization	of	an	
algebraic	structure.

Consider	the	sequence	 𝐶. of	complexes	associated	to	
a	point	cloud	for	an	sequence	of	distance	values:

𝐶& 𝐶1 𝐶2↪↪⋯ 𝐶' ↪ 𝐶/ ↪ ↪ 𝐶5 ↪ 𝐶6 ↪ ↪ ⋯

This	sequence	of	complexes,	with	maps,	is	a	filtration.



A	barcode	is	a	visualization	of	an	
algebraic	structure.

Filtration: 𝐶& ↪ 𝐶' ↪ ⋯ ↪ 𝐶7
Homology	with	coefficients	from	a	field	𝐹:

𝐻∗ 𝐶& → 𝐻∗ 𝐶' → ⋯ → 𝐻∗ 𝐶7
Let	𝑀 = 𝐻∗ 𝐶& ⊕ 𝐻∗ 𝐶' ⊕⋯⊕𝐻∗ 𝐶7 .

For	𝑖 ≤ 𝑗,	the	map	𝑓.
C ∶ 𝐻∗ 𝐶. → 𝐻∗ 𝐶C is	induced	by	the	

inclusion	𝐶. ↪ 𝐶C.

Let	𝐹 𝑥 act	on	𝑀 by	𝑥F𝛼 = 𝑓..HF 𝛼 for	any	𝛼 ∈ 𝐻∗ 𝐶. .

Then	𝑀 is	a	graded	𝐹[𝑥]-module,	called	a	persistence	module.

i.e.	𝑥 acts	as	a	shift	map	𝑥 ∶ 𝐻∗ 𝐶. → 𝐻∗ 𝐶.H&



A	barcode	is	a	visualization	of	an	
algebraic	structure.

Let	𝑀 = 𝐻∗ 𝐶& ⊕ 𝐻∗ 𝐶' ⊕⋯⊕𝐻∗ 𝐶7 .

Then	𝑀 is	a	graded	𝐹[𝑥]-module.

The	structure	theorem	for	finitely	generated	modules	over	
PIDs	implies:

𝑀 ≅							 𝑥NO ⋅ 𝐹 𝑥 ⊕ 							𝑥QR ⋅ 𝐹 𝑥
𝑥SR ⋅ 𝐹 𝑥T⊕

𝑖
⊕
𝑗

homology	generators	that	appear	
at	𝑡. and	persist	forever	after

homology	generators	that	appear	
at	𝑟C and	persist	until	𝑟C + 𝑠C

Thus,	the	barcode	is	a	complete	discrete	invariant.

i.e.	bars	of	the	form	(𝑡C,∞) i.e.	bars	of	the	form	(𝑟C, 𝑠C)



Persistence	barcodes	are	stable	with	respect	to	
pertubations of	the	data.		

Stability:

Computation:

Cohen-Steiner,	Edelsbrunner,	Harer (2007)

The	barcode	is	computable	via	linear	algebra	on	the	
boundary	matrix.	Runtime	is	𝑂(𝑛/),	where	𝑛 is	the	
number	of	simplices.

Zomorodian and	Carlsson (2005)



Where	has	persistent	homology	been	used?

Image	Processing

Gunnar	Carlsson,	Tigran Ishkhanov,	Vin	de	Silva,	Afra Zomorodian.	“On	the	
Local	Behavior	of	Spaces	of	Natural	Images.”	Journal	of	Computer	Vision.	Vol.	
76,	No.	1,	2008,	p.	1	– 12.

The	space	of	3x3	
high-contrast	patches	
from	digital	images	
has	the	topology	of	a	

Klein	bottle.

Image	credit:	Robert	Ghrist.	“Barcodes:	The	Persistent	Topology	of	Data.”	Bulletin	of	the	American	Mathematical	Society.	Vol.	45,	no.	1,	2008,	p.	61-75.



Cancer	
Research

Monica	Nicolau,	Arnold	J.	Levine,	Gunnar	Carlsson.	“Topology-Based	Data	
Analysis	Identifies	a	Subgroup	of	Breast	Cancers	With	a	Unique	Mutational	
Profile	and	Excellent	Survival.”	Proceedings	of	the	National	Academy	of	
Sciences.	Vol.	108,	No.	17,	2011,	p.	7265	– 7270.

Topological	analysis	of	
very	high-dimensional	
breast	cancer	data	can	
distinguish	between	

different	types	of	cancer.

Where	has	persistent	homology	been	used?



Problem:	Persistent	homology	is	sensitive	to	
outliers.



Problem:	Persistent	homology	is	sensitive	to	
outliers.

Do	we	have	to	threshold	by	density?

Red	points	in	
dense	regions

Purple	
points	in	
sparse	
regions



Multi-dimensional	persistence:	Allows	us	to	work	
with	data	indexed	by	two	parameters,	such	as	
distance	and	density.

We	obtain	a	
bifiltration:	
a	set	of	
simplicial
complexes	
indexed	by	
two
parameters.

density

di
st
an
ce

↪

↪

↪ ↪



Example: A	bifiltration indexed	by	curvature	𝜅 and	radius	𝜀.

Ordinary	persistence	requires	fixing	either	𝜅 or	𝜀.

Carlsson and	
Zomorodian

(2009)
curvature	𝜅

ra
di
us
	𝜀

fixed	𝜅^

fixed	𝜀^



The	homology	of	a	bifiltered simplicial complex	is	a finitely-
generated	bigraded module:	i.e.	a	2-graded	module	over	
𝐹[𝑥, 𝑦] for	a	field	𝐹.

There	is	no	complete,	discrete	invariant	for	multi-dimensional	
persistence	modules	(Carlsson and	Zomorodian,	2007).

We	call	this	a	2-dimensional	persistence	module.

Problem:	The	structure	of	multi-graded	modules	is	much	
more	complicated	than	that	of	graded	modules.

Thus,	there	is	no	multi-dimensional	barcode.

Algebraic	Structure	of	Multi-dimensional	
Persistence

Question: How	can	we	visualize	multi-dimensional	persistence?



Concept: Visualize	a	barcode	along	any	one-dimensional	
slice	of	a	multi-dimensional	parameter	space.	

density

di
st
an
ce

Example:

Along	any	one-
dimensional	
slice,	a	
barcode	exists.



Bi-graded	Betti numbers	𝝃𝟎 and	𝝃𝟏

These	are	functions,
𝜉^, 𝜉& ∶ 	ℕ' → ℕ

𝜉^ indicates	
coordinates	at	
which	homology	
appears

Example:	1st homology	(holes)

1 2 3

1

2

3

𝝃𝟎 𝟏, 𝟑 = 𝟏



Bi-graded	Betti numbers	𝝃𝟎 and	𝝃𝟏

These	are	functions,
𝜉^, 𝜉& ∶ 	ℕ' → ℕ

𝜉^ indicates	
coordinates	at	
which	homology	
appears

Example:	1st homology	(holes)

1 2 3

1

2

3

𝝃𝟎 𝟐, 𝟏 = 𝟏



Bi-graded	Betti numbers	𝝃𝟎 and	𝝃𝟏

These	are	functions,
𝜉^, 𝜉& ∶ 	ℕ' → ℕ

𝜉^ indicates	
coordinates	at	
which	homology	
appears

Example:	1st homology	(holes)

1 2 3

1

2

3

𝟏

𝟏

𝟎 𝟎

𝟎𝟎𝟎

𝟎 𝟎

values	of	𝝃𝟎
in	green



Bi-graded	Betti numbers	𝝃𝟎 and	𝝃𝟏

These	are	functions,
𝜉^, 𝜉& ∶ 	ℕ' → ℕ

𝜉^ indicates	
coordinates	at	
which	homology	
appears

Example:	1st homology	(holes)

1 2 3

1

2

3

𝜉& indicates	
coordinates	at	
which	homology	
disappears

𝝃𝟏 𝟐, 𝟑 = 𝟏



Bi-graded	Betti numbers	𝝃𝟎 and	𝝃𝟏

These	are	functions,
𝜉^, 𝜉& ∶ 	ℕ' → ℕ

𝜉^ indicates	
coordinates	at	
which	homology	
appears

Example:	1st homology	(holes)

1 2 3

1

2

3

𝜉& indicates	
coordinates	at	
which	homology	
disappears

𝝃𝟏 𝟑, 𝟑 = 𝟏



Bi-graded	Betti numbers	𝝃𝟎 and	𝝃𝟏

These	are	functions,
𝜉^, 𝜉& ∶ 	ℕ' → ℕ

𝜉^ indicates	
coordinates	at	
which	homology	
appears

Example:	1st homology	(holes)

1 2 3

1

2

3

𝜉& indicates	
coordinates	at	
which	homology	
disappears

𝟎

𝟎

𝟎 𝟎

𝟎𝟎𝟎

𝟏 𝟏

values	of	𝝃𝟏 in	red
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Mike	Lesnick
and
Matthew	Wright



How	RIVET	Works
RIVET	pre-computes	a	relatively	small	number	of	discrete	
barcodes,	from	which	it	draws	barcodes	in	real-time.

Endpoints	of	bars	
appear	in	the	same	
order	in	each	of	
these	two	barcodes.

Endpoints	of	bars	in	
this	barcode	have	a	
different	order.



Endpoints	of	bars	
are	the	projections	
of	support	points	
of	the	bigraded

Betti numbers	onto	
the	slice	line.

We	can	identify	
lines	for	which	

these	projections	
agree.



At	the	core	of	RIVET	is	a	line	
arrangement.

Data	Structure

Each	line	corresponds	to	a	
point	where	projections	of	
two	support	points	agree.

Cells	correspond	to	families	of	
lines	with	the	same	discrete	
barcode.

When	the	user	selects	a	slice	
line,	the	appropriate	cell	is	
found,	and	its	discrete	barcode	
is	re-scaled	and	displayed.

point-line	duality:
𝑎, 𝑏 	↔ 𝑦 = 𝑎𝑥 − 𝑏



co
m
pu

ta
tio

na
l

pi
pe

lin
e

bifiltration

compute	Betti numbers	𝜉^ and	𝜉&

build	line	arrangement

compute	discrete	barcodes

ready	for	interactivity



Performance
Suppose	we	are	interested	in	𝑖th homology.

Let	𝑛 be	the	total	number	of	simplices of	dimensions	
𝑖 − 1,	𝑖,	and	𝑖 + 1 in	the	bifiltration.	

Let	𝑘 be	the	number	of	multigrades.	

Then	the	time	required	to	compute	the	line	
arrangement	and	all	discrete	barcodes	is

𝑂 𝑘' log 𝑘 + 𝑛𝑘' + 𝑛/ .

Then	the	time	required	to	find	a	cell	is	𝑂 log 𝑘 .



For	more	information:
Robert	Ghrist.	“Barcodes:	The	Persistent	Topology	of	

Data.”	Bulletin	of	the	American	Mathematical	Society.	
Vol.	45,	no.	1,	2008,	p.	61-75.

Gunnar	Carlsson and	Afra Zomorodian.	“The	Theory	of	
Multidimensional	Persistence.”	Discrete	and	
Computational	Geometry.	Vol.	42,	2009,	p.	71-93.

Michael	Lesnick and	Matthew	Wright.	“Efficient	
Representation	and	Visualization	of	2-D	Persistent	
Homology.”	in	preparation.


